Common Acid/Base Disorders: Causes and Consequences

P. Ryan Killian, PharmD, BCPS Assistant Professor Clinical Pharmacy UAMS College of Pharmacy Critical Care Clinical Pharmacist Baxter Regional Medical Center Mountain Home, Arkansas

Disclosure

I have no financial relationships to disclose

I will discuss off label use and/or investigational use in my presentation

Goals

Identify signs and symptoms of common acid/base disorders

- Identify etiology of common acid/base disorders
- Recommend safe and effective pharmacotherapy for common acid/base disorders
- Recommend accurate monitoring for parameters of recommended therapy

Review available pharmacotherapy for common acid/base disorders

Discuss appropriate monitoring for parameters of recommended therapy

Acid-Base

Acid-Base

Acid-Base

Functions of pH

Respiratory drive

Electrolyte levels and availability
 Potassium
 Calcium

Enzyme mediated reactions

Receptor function

THE BASICS

ABG Normal Values:

■ pH 7.35-7.45

PCO2 35-45 mmHg

PO2 80-100 mmHg

■ HCO₃ 20-28 mEq/L

THE BASICS

<u>Acidemia</u>

high H+, low pH

result of decreased HCO₃ or increased PCO2

<u>Alkalemia</u>

Iow H+, high pH result of increased HCO₃ or decreased PCO2

Consequences:

Cardiovascular

Respiratory

Metabolic

Cerebral

Adrogué, H, et al. Management of Life-Threatening Acid-Base Disorders First of Two Parts. NEJM 1998; 338 (1): 26-34

Alkalemia

Consequences:

Cardiovascular

Respiratory

Metabolic

Cerebral

Adrogué, H, et al. Management of Life-Threatening Acid-Base Disorders Second of Two Parts. NEJM 1998; 338 (2): 107-111

PRIMARY ACID-BASE DISTURBANCES

PRIMARY ACID-BASE DISTURBANCES

Respiratory acidosis

Primary change: increased PCO2

- Increase in PCO2 due to alveolar hypoventilation or impairment of respiration
- Compensation: enhanced renal H+ secretion (occurs over 3-5 days) resulting in increased plasma HCO₃

Respiratory center depression

- Drug-induced
 - Anesthetics
 - Barbituates
 - Benzodiazepines
 - Opiates
 - Parenteral or enteral nutrition (if excessive carbohydrates)
- Sleep apnea
- Obesity
- CNS disease (stroke, infection)

The Washington Manual of Critical Care. 2nd edition

Neuromuscular disorders:

- myasthenia gravis, Guillain-Barré syndrome, hypokalemia, myopathy
- Upper airway obstruction
- Pulmonary disease:
 - COPD
 - Asthma
 - Pulmonary edema
 - Pneumothorax
 - Pneumonia
- Mechanical ventilation

Treatment

- Correct underlying disorders
- Hold or discontinue any respiratory depressant drugs
- Improve ventilation/respiration

Reverse effects of respiratory depressants if present:

- Opiates: Naloxone 0.4-2 mg SQ/IV/IM q 2-3 min prn (should see response within 10 minutes)
- Benzodiazepines: Flumazenil 0.2 mg IV q1 min prn (max 5 doses per series, may repeat series at 20 minute intervals)

The Washington Manual of Critical Care. 2nd edition

ABG every 2-5 hours initially

ABG every 12-24 hours as pH improves

Basic Metabolic Panel

Respiratory status

The Washington Manual of Critical Care. 2nd edition

PRIMARY ACID-BASE DISTURBANCES

Metabolic Acidosis

Primary change: decreased HCO₃

Decrease in plasma HCO₃ due to HCO₃ loss or accumulation of acid

Compensation: fall in PCO2 resulting from alveolar hyperventilation

Diagnostics

<u>Anion Gap</u>

- [Na+] {[Cl-] + [HCO₃]}
- Normal: 10-14
- High AG indicates overproduction of acid or presence of renal failure
- Low AG signifies hypoalbuminemia, halide intoxication, multiple myeloma

GAP Metabolic Acidosis

Lactic Acidosis
Ketoacidosis
Endstage Renal Failure
Methanol ingestion
Ethylene Glycol ingestion
Salicylates

GAP Metabolic Acidosis

Methanol Uremic acid Diabetic Ketoacidosis Propylene glycol (Infection, Iron, Isoniazid) Lactic acidosis Ethylene glycol Salicylates

GAP Metabolic Acidosis

Methanol Uremia Lactic Acidosis Ethylene glycol Propylene Glycol Aspirin Ketoacidosis

Risk factors

hypoxia

- hypotension
- sepsis
- cardiovascular shock
- anemia
- ischemia
- diabetes

leukemia

Drug Induced:

- APAP
- catecholamines
- NRTIs (ddl, d4T, ddC)
- Ibuprofen
- Iron overdose
- Isoniazid overdose

- Linezolid
- Metformin
- Neuroleptic malignant syndrome
- Nitroprusside (secondary to cyanide toxicity)

Drug Induced cont.

- Propylene glycol
- Propofol
- Salicylate overdose (mixed disorder: metabolic acidosis with respiratory alkalosis)
- Streptozocin
- Sorbitol and Xylitol
- Theophylline overdose

Treatment

Optimize hemodynamics
 MAP
 HR
 CVP

O₂ delivery

- Hb
- Arterial O₂ saturation
- Central venous O₂ saturation

Kraut J, et al. Lactic Acidosis. NEJM 2014;371:2309-19

Treatment

pH correction

Sodium Bicarbonate

- V_d 50% body weight
- THAM

 Tromethamine (mL of 0.3 M solution) = body weight (kg) x base deficit (mEq/L) x 1.1

- HD

Continuous HD preferred, controlled studies needed

Acetaminophen Overdose

Stage III

Liver failure

Decreased lactate clearance

Treatment

Standard APAP overdose treatment and supportive care

Metformin

Mechanism

Increased serum levels of metformin
Interference with oxidative phosphorylation
Suppression of hepatic gluconeogenesis

Treatment
 Supportive Care
 Hemodialysis

Contraindicated with renal dysfunction?

Kraut J, et al. Lactic Acidosis. NEJM 2014;371:2309-19

Propylene Glycol

d-Lactate and l-lactate are normal products of metabolism

May occur with or without oxidative phosphorylation impairment

Kraut J, et al. Lactic Acidosis. NEJM 2014;371:2309-19

Propylene Glycol

diazepam
digoxin
esmolol
etomidate
hydralazine
lorazepam

- MVI injection
- nitroglycerine
- pentobarbital
- phenobarbital
 - phenytoin
- trimethoprim/
 - sulfamethoxazole

Propylene Glycol

Treatment

Discontinue drug

Optimize hemodynamics

O₂ delivery

pH correction

The Washington Manual of Critical Care. 2nd edition

Aspirin Overdose

Interference with oxidative phosphorylation
Hyperlactatemia is usually minimal
Commonly presents as a mixed disorder
Treatment:

Activated charcoal
Sodium bicarbonate to pH greater than 7.45
HD in patients with renal failure

Propofol Infusion Syndrome

Interference with oxidative phosphorylation

Lactic acidosis can be seen with prolonged high-dose infusion (>5 mcg/kg/min for > 48 h)

Treatment:
 Discontinuation
 Supportive Measures

Diabetic Ketoacidosis

Diabetes Mellitus

- Infection
- Myocardial infarction
- Gestational Diabetes
- Initial presentation/insufficient insulin

Breakdown of fatty acids/production of ketones

Treatment

- Insulin
- Fluid/electrolytes
- Sodium bicarbonate for pH < 7.1</p>

Treatment

Increased AG Acidosis: treat underlying disorder

Renal Failure

Hold or discontinue any suspected drugs

 Consider oral alkali therapy if no improvement in acidosis within 1-3 days or if symptomatic

<u>Monitoring</u>

Hemodynamics

• O_2 delivery

Basic Metabolic Panel

Lactic Acid

Acid-Base

Risk Factors

- Cirrhosis
- CHF
- Diabetes
- renal dysfuntion
- ECF volume depletion
- cholestyramine + aldosterone antagonists
- cummulative dose of amphotericin B > 2-3 g

Renal HCO₃- loss

- Carbonic Anhydrase Inhibitors
- Renal Tubular Acidosis (RTA)

Gastrointestinal HCO₃ loss

- Diarrhea
- Pancreatic, biliary or small bowel fistulas or drainage
- Cholestyramine, laxative abuse
- Dilutional (rapid administration of IV fluids)

Renal Tubular Acidosis (RTA)

Proximal RTA (Type II)	Distal RTA (Type I)	Hyperkalemia-associated Distal RTA (Type IV)
Acetazolamide	Amphotericin B	Aldosterone deficiency or resistance
Sulfamethoxazole	Cisplatin	Heparin
Topiramate		ACEIs and ARBs
AMGs		Amiloride
Arginine		Lithium
Cidofovir		Trimethoprim
Ifosfamide		Triamterene
Tetracycline (expired)		Foscarnet
Streptozotocin		Tacrolimus

Treatment

- pH < 7.1
 - Discontinue any suspected drugs
 - IV fluids
 - Calculate bicarbonate deficit (0.5L/kg x Weight (kg) x [HCO₃]_{desired} – [HCO₃]_{observed}
 - Give 30-50 % of calculated dose over 30 minutes to several hours
 - Reassess need for additional replacement with ABG 30 minutes after end of infusion (target pH 7.15-7.20, plasma bicarbonate 8-10 mEq/L)
 - Hemodialysis if renal failure present or insufficient response

Treatment

Proximal RTA

10-25 mEq alkali/kg/24 hr in 3 divided doses

prefer potassium citrate or potassium/sodium citrate combination

Treatment

Distal RTA

1-2 mEq alkali/kg/24 hr in 3 divided doses

sodium bicarbonate preferred

titrate to serum HCO₃ 20-24 mEq/L

Treatment

Hyperkalemic Distal RTA
 reduce serum potassium using following order of intervention

- Kayexylate 15-30 g po 1-4x/d ± dietary potassium restriction
- Addition of furosemide 60-80 mg po daily
- Addition of fludrocortisone 0.1-0.2 mg po daily (monitor for s/sx of fluid retention)

Alkali Therapy

Generic Name	Trade	mEq Alkali
	Name	
Shohl's solution	Bicitra	1 mEq Na/ml = 1 mEq
(sodium citrate/citric acid)		bicarbonate/mL
Sodium bicarbonate	Various	325 mg tablet = 3.9 mEq
		bicarbonate/tablet
		650 mg tab = 7.8 mEq
		bicarbonate/tablet
Potassium citrate	Urocit-K	5 mEq citrate/tablet
Potassium bicarbonate/	K-Lyte	25 mEq bicarbonate/tablet
Potassium citrate	K-Lyte DS	50 mEq bicarbonate/tablet
Potassium citrate/	Polycitra-K	2 mEq K/ml = 2 mEq
Citric acid		bicarbonate/mL
		30 mEq bicarbonate/packet
Sodium citrate/potassium	Polycitra	1 mEq K/mL, 1 mEq Na/mL = 2
citrate/citric acid		mEq bicarbonate/mL

Treatment

■ pH > 7.1

Discontinue any suspected drugs

IV fluids

Hemodialysis if renal failure or insufficient response

Monitoring

Basic Metabolic Panel (especially K+)

Ins and outs

Acid-Base

PRIMARY ACID-BASE DISTURBANCES

Respiratory Alkalosis

Primary change: decreased PCO2

Decreased PCO2 resulting from hyperventilation

Compensation: small decrease in NH4+ excretion leading to decreased plasma HCO₃ with plasma pH (usually) in normal range

Harrison's Principles of Internal Medicine. 19th edition.

Hypoxemia: Pulmonary disease Anemia Heart failure High altitude **Respiratory center stimulation** Pulmonary disease: pneumonia, edema, emboli, interstitial fibrosis Mechanical hyperventilation

Respiratory center stimulation

- Drug-induced:
 - Salicylates (mixed metabolic acidosis and respiratory alkalosis)
 - Progesterone
 - Theophylline overdose
 - Catecholamies
- Pregnancy
- Psycogenic
- CNS disorders
- Liver failure
- Gram-negative sepsis

Treatment

Identify and correct underlying disorders

Hold or discontinue any suspected drugs

Initiate oxygen therapy in patients with severe hypoxemia (pO2 < 40 mmHg) or change ventilator settings as needed

Treat theophylline and salicylate overdoses appropriately

Adrogué, H, et al. Management of Life-Threatening Acid-Base Disorders Second of Two Parts. NEJM 1998; 338 (2): 107-111

<u>Monitoring</u>

Arterial Blood Gas

Basic Metabolic Panel

Respiratory status

PRIMARY ACID-BASE DISTURBANCES

Metabolic Alkalosis

Primary change: increased HCO₃

- Increase in plasma HCO₃ due to H+ loss or HCO₃ gain
- Compensation: rise in PCO2 resulting from decreased alveolar ventilation

ECF volume contraction, normotension, hypokalemia, secondary hyperaldosteronism

ECF volume expansion, hypertension, hypokalemia, mineralcorticoid excess

Volume Contraction

Drug-induced

- nonreabsorbable anions (ampicillin, nafcillin, penicillin, ticarcillin)
- Diuretics
- Gentamicin
- Laxative abuse
- Co-administration of sodium polystyrene sulfonate and AIOH or MagOH

Volume Contraction

 GI: vomiting, gastric aspiration, villous adenoma

- Edematous states
- Mg or K depletion
- Recovery from lactic acidosis or ketoacidosis
- Post-hypercaphic states

Volume Expansion

Drug-induced:

Fludrocortisone

Glycyrrhizic acid (black licorice, chewing tobacco)

Volume Expansion

Renal artery stenosis Hypertension Renin-secreting tumor Primary aldosterism Adrenal enzyme defects Cushing's syndrome Liddle's syndrome

Treatment

- Correct underlying disorder, hold or discontinue any suspected drugs
- If ECF volume contracted:
 - NS at appropriate rate for degree of volume depletion
- Replace potassium as needed
- If ECF volume overload:
 - If no renal insufficiency: Acetazolamide: 250-375 daily or BID
 - If ARF or ESRD: hemodialysis or peritoneal dialysis (reduced bicarbonate bath)

Treatment

- If severe alkalemia (pH > 7.7) with ECF volume excess or renal failure:
 - Calculate HCI dose required:
 - Males:[0.5L/kg x weight (kg)] x [103 mEq/L-observed serum chloride]
 - Females: [0.6L/kg x weight (kg)] x [103 mEq/Lobserved serum chloride]
 - Administer dose HCI in D5W or NS via central vein at rate of 10-25 mEq/hr
- Hypoaldosteronism: spironolactone or amiloride

Monitoring

Arterial Blood Gas

Respiratory Status

Basic Metabolic Panel

Conclusion

Verify disorder

Hold or discontinue any suspected drugs

Supportive Care

Correct pH if disorder severe

Questions

